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Abstract. In this paper we propose a novel human body pose refine-
ment method that relies on an existing single-frame pose detector and
uses an optical flow algorithm in order to increase quality of output tra-
jectories. First, a pose estimation algorithm such as OpenPose is applied
and the error of keypoint position measurement is calculated. Then, the
velocity of each keypoint in frame coordinate space is estimated by an
optical flow algorithm, and results are merged through a Kalman filter.
The resulting trajectories for a set of experimental videos were calculated
and evaluated by metrics, which showed a positive impact of optical flow
velocity estimations. Our algorithm may be used as a preliminary step
to further joint trajectory processing, such as action recognition.
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1 Introduction

Human motion tracking is an important application of machine vision algorithms
that could be used for many business purposes. The most popular tasks in the
digital world include distributed video surveillance system, solutions for digital
marketing, solutions for human tracking in an industrial environment.

This task can have different levels of details. The high-level approach is object
detection, when the position of human as a whole object is extracted and its
bounding box in 2D or 3D space is estimated.

A more interesting approach would be to detect a human pose in motion. This
task is more complicated because human pose has substantially more dimensions
compared to a bounding box.

Recent advances in deep learning have resulted in efficient single-frame pose
tracking algorithms, such as [14] [6]. By applying them sequentially to a video
stream, a set of trajectories for joints may be obtained. However, since these
algorithms usually analyze input frames independently, the obtained trajectories
usually have various artifacts, such as discontinuities or missing points.
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In the reported research, we solve a task of enhancing obtained joint tra-
jectories for multiple persons in a scene by leveraging the temporal information
using an optical flow algorithm.

2 Related work

The task of retrieving pose dynamics for all persons in the video may be consid-
ered as a variant of multiple object tracking (MOT) task, where the considered
objects are not persons but individual pose keypoints. There are two major
paradigms in the field of MOT - detection-based tracking and detection-free
tracking [11]. In the first case, machine vision algorithm capable of detecting
individual objects is applied to every frame separately and then individual de-
tections are linked into trajectories. The second approach has no detection al-
gorithm and instead relies on temporal changes in the video stream to detect
objects. With the development of efficient real-time object detection algorithms
in recent years, the detection-based approach has become dominant in the lit-
erature. However, independent analysis of video frames results in inevitable loss
of information conveyed by temporal changes in the video. This information
may be relevant to object detection and could help improve the tracker perfor-
mance. Various approaches were suggested to combine these individual frame
and temporal features.

For example, in [12] a novel approach to combine temporal and spatial fea-
tures was proposed by adding recurrent temporal component to a convolutional
neural network (CNN) designed to detect objects in a single frame. The outputs
of object detection network in sequential frames were fed into recurrent neural
network (RNN). The resulting architecture is then trained to predict the refined
tracking locations.

In [1] a tracker using prior information about possible person pose dynamics
is proposed. This information is modelled as a hierarchical Gaussian process
latent variable model, and allows to impose some temporal coherency in detected
articulations.

In [17] a method leveraging optical flow for a pose tracking is proposed. The
velocities obtained from flow data are used to generate expected coordinates of
a pose in next frame. Predicted coordinates are used later to form tracks by
greedy matching.

Our research is based on OpenPose as a body pose detector, proposed in [3].
It is a real-time solution capable to detect a 2D pose of multiple people in an im-
age. It uses a non-parametric representation, which is referred to as Part Affinity
Fields (PAFs), to learn to associate body parts with individuals in the image.
This bottom-up system achieves high accuracy and real-time performance, re-
gardless of the number of people in the image.
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3 Definitions

Fist let us define several frames of reference (FoR) for our research, which are
shown in figure 1.

Fig. 1. Frames of references for 2D skeletons parameters calculation

U, V – this frame of reference is associated with virtual or real motionless
camera.

Uf
c , V

f
c – this frame of reference is associated with frames in video. If camera

is motionless, this FoR will be the same for all frames in video. This would be a
common case of video surveillance systems for security or marketing.

Ufk
p , V fk

p – this frame of reference is associated with object k, detected for
the frame f .

We will not use index f for video processing of motionless camera viewed
scenes.

4 Method

Our goal is to propose a novel algorithm for robust tracking of multiple person
poses in the video stream by leveraging both temporal and spatial features of the
data. To achieve this, we combine predictions done by a single-frame person/pose
detection algorithm (such as OpenPose and YOLO) with Optical Flow - based
estimations through a Kalman filter.

The complete algorithm is described below and shown in figure 2.
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Fig. 2. Full algorithm for 2D skeleton model calculation and filtration

1. Video preliminary processing step produces a set of frames with normalized
brightness/contrast and calculates Gf values.

2. Objects detection step provides a set of bounding boxes for each person,
detected by YOLO or some other object detection algorithm.

3. Pose detection ROI generation step provides a set of input frame regions for
further pose detection.

4. 2D pose estimation and person identification step computes a set of vectors
Bfp = {ufp1 , vfp1 , ufp2 , vfp2 , . . . , ufpN , vfpN , }, where N = 25 is the number of joints
for selected model of human body. (BODY-25 model provided by the OpenPose
solution)

5. Optical Flow calculation step applies an optical flow estimation algorithm to
the input frame, producing pixel velocity vectors for every joint position returned
by the pose detector.
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6. Kalman Filtration step calculates the time series for filtered movement vectors

B̂fp = {ûfp1 , v̂fp1 , ûfp2 , v̂fp2 , . . . , ûfpN , v̂fpN , }
Let’s discuss each step in detail.
After performing necessary source-specific video pre-processing, the next step

would be extracting poses from single video frames where possible. We have
selected an OpenPose-based solution as a human pose detector. OpenPose is
a multi-person real-time pose keypoint detection algorithm, initially presented
in [3]. An open-source implementation of OpenPose is used, providing pose key-
points in BODY-25 format. Reduced model example for 18 keypoints is shown
in the fig. 3

Fig. 3. Keypoints of a human pose model used in OpenPose (CMU-Perceptual-
Computing-Lab, 2017)

However, direct application of OpenPose library to a high-resolution 4K video
stream would not work. Since algorithm memory requirements grow linearly with
input image area and amount of 3 GB for a default resolution of 656x656 is
consumed, a distributed video processor system would be needed. Downscaling
of the input image results in a drastic loss of detected pose quality. We solve
this problem by splitting image into a set of overlapping regions and invoking
the detector on these regions in a parallel manner, combining detection results
afterwards. We can substantially boost the algorithm’s efficiency, if a crowd
on the video is sparse, which is often the case for video surveillance systems.
Instead of processing the whole input frame, we employ an object detection
algorithm to detect persons first and then build a set of regions that cover all
persons’ bounding boxes. We used YOLO (You Only Look Once)-based solution,
as it performs fast detection of objects for 4K images. [13] It was observed that
YOLO object detections are also useful for eliminating false positives generated
by OpenPose.

For every frame in the input frame sequence, the algorithm first applies
YOLO-based object detector trained on COCO dataset. [10] The result of YOLO
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processing is a set of bounding boxes, with top left and bottom right corners
defined in Of

c , U
f
c , V

f
c FoR. A set of regions fully covering these rectangles is

generated with resolution matching the selected input resolution of OpenPose
network.

The result of video processing in the detection stage is a list of persons’
bounding boxes for each frame. For each detected object we have the bounding
box coordinates u1, v1, u2, v2, detection confidence and the OpenPose keypoint
data if a skeleton was successfully matched with YOLO object: vector Bfp.
Additionally, we calculate approximate coordinates standard deviation for each
keypoint by integrating over part heatmaps returned by the OpenPose. These
values are later used as input for the Kalman filter as a measurement error
estimate.

To further refine poses extracted from single frames, algorithm uses an optical
flow solution. Optical flow is a technology used in various fields of computer
vision to find displacement of individual pixels between two video frames. It is
usually expressed as a 2D vector field {vflow = (dx, dy)T } for every pixel of the
initial frame In(x, y). Corresponding pixel in the next frame is In+m(x+ dx, y+
dy). Many different approaches to optical flow calculation are proposed in the
literature. In our work, we use several open source optical flow implementations
provided by the OpenCV library.

The first one is presented in [7] called Dense Inverse Search. It belongs to the
family of ’dense optical flow’ algorithms and is notable for low computational
complexity while it preserves good scores in standard optical flow benchmarks.
The another one is called DeepFlow and was presented in paper [15].

The example of used soccer game frame for optical flow visualization calcu-
lated by two different algorithms is presented on figure 4.

Fig. 4. The example of used soccer game frame for optical flow visualization calculated
by two different algorithms

For Optical Flow visualization we use the HSV model. Hue represents the
motion vector angle and saturation encodes the motion vector length.
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The result of Dense-Inverse-Search algorithm for Optical Flow calculation is
presented on figure 5.

Fig. 5. Example of optical flow, calculated by Dense-Inverse-Search algorithm

The result of DeepFlow algorithm for Optical Flow calculation is presented
on figure 6.

Fig. 6. Example of optical flow, calculated by DeepFlow algorithm

By applying a selected algorithm to every video frame in the input stream
and by taking pixel velocity estimations at keypoints generated by OpenPose,
we achieve a new velocity measurement.

We also need to build trajectories from individual detections in order to
perform matching of detected poses belonging to the same person in different
frames. [2] [9]

To combine pose keypoint measurements generated by OpenPose and corre-
sponding pixel velocities estimated through optical flow, we use Kalman filter.
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Kalman Filter was first proposed in 1960 [5] and, as a matter of fact, became
the industry standard in the tasks related to fusion of measures performed by
sensors of different types. Its application requires specification of a motion model
for modeled object. There are several common motion models used in case the
model of real motion is difficult or impossible to formalize. [8] Popular choices
for a 2D case include a constant Cartesian velocity model and polar velocity
non-linear model employing extended Kalman filter. [2] Alternative and more
complex models can be implemented when 3D pose information is available, but
their assessment lies beyond the scope of this work.

In our experiments we used the constant Cartesian velocity model applied
independently to joint coordinates in 2D video frame FoR. In this instance,
the state vector consists of 4 components representing estimated position and
velocity of pose keypoint: s(t) = (ût, v̂t, ˙̂ut, ˙̂vt)

T . The state in the moment t+ 1
may be linked to the state values in the moment t with the following equation:

s(t+ 1) =


1 0 δt 0
0 1 0 δt
0 0 1 0
0 0 0 1



ût
v̂t
˙̂ut
˙̂vt

+


0.5δt2 0

0 0.5δt2

δt 0
0 δt

(νx(t)
νy(t)

)
(1)

and the process noise covariance matrix:
0 0 0 0
0 0 0 0
0 0 āu 0
0 0 0 āv

 (2)

For every experiment configuration, two independent trajectory estimation
passes were performed - with and without optical flow velocity measurements.

5 Results

To evaluate performance of proposed solution for different applications, we pre-
pared a set of video fragments.

They are:

1. a fragment of 4k soccer video broadcast
2. a video from indoor surveillance system in a supermarket
3. a video from outdoor surveillance system

The soccer match video had an additional pre-processing step - the fan stands
were cut.

The fig 7 presents skeletons for soccer and supermarket cases.
Examples of filtered trajectories are presented on figs 8, 9.
The figure 8 a) presents selected and filtered U coordinate trajectories of an

ankle of walking person on outdoor CCTV camera. Periodic increased difference
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Fig. 7. Obtained execution results for the soccer and indoor scenes. Yellow rectangles
correspond to different OpenPose calls, green rectangles are objects detected by YOLO.

Fig. 8. a) Detected and filtered U coordinate trajectories of an ankle of walking person
on outdoor CCTV camera. b) Detected and filtered U coordinate trajectories of a knee
of walking person on outdoor CCTV camera

between filtered and detected value is caused by poor Kalman model prediction
of footsteps.

The figure 8 b) presents detected and filtered U coordinate trajectories of a
knee of a walking person captured by an outdoor CCTV camera. Short bursts
of noise are caused by OpenPose detection errors occurring due to overlapping
with other limbs.

The figure 9 a) presents detected and filtered U coordinate trajectories of a
wrist of a walking person with partial visibility. Rough line sections are intervals
of time with missing OpenPose detections, resulting in constant velocity for
filtered trajectories.

The figure 9 b) presents detected and filtered U coordinate trajectories of an
elbow of a soccer player.
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Fig. 9. a) Detected and filtered U coordinate trajectories of a wrist of walking per-
son with partial visibility. b) Rough line sections are intervals of time with missing
OpenPose detections, resulting in constant velocity for filtered trajectories.

It should be noted that the filter using Optical Flow measurements demon-
strates a more stable behavior in parts of the video with frequent OpenPose
detection errors. To evaluate the improvement, we introduced a quality metric.

To confirm the validity of Kalman filter application in the absence of known
ground truth, a typical approach would be to extract standardized residuals
and check if they follow the normal distribution with zero mean and constant
variance. [4] However, in our case, a Kalman model is highly approximate and
this method cannot be used for robust estimation of the impact of velocity
measurements. Instead, we calculate a simpler metrics coming from a rather
intuitive idea - the predicted values provided by a ’better’ filter should have
less difference from actual measured values on average. This may not be true,
if prediction error can correlate with measurement error at the next step, but,
in our case, the studied velocity measurement has different source of errors than
measures provided by a single-frame detector.

With these assumptions, we calculated the average squared difference be-
tween predicted and measured coordinates for Kalman filter with and without
optical flow velocity measurements:

σ2 =
1

N

N∑
i=1

|Bfp − B̂fp|2 (3)

where Kalman output prediction is taken before adjusting for the measure-
ment at that step. The sum is taken over all detected keypoints in the video
with associated trajectory.

The results for different types of video are presented in the table 1. It may
be concluded that both studied algorithms have a similar positive impact on the
error, with Dense Inverse Search being slightly more effective.
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Table 1. Results of quality metrics in absence of ground truth

Algorithm σ2, soccer σ2, outdoor σ2, PoseTrack

Open Pose + Kalman Filter 9.47 5.51 43.5
Open Pose + Kalman Filter + DIS 8.86 4.93 38.4
Open Pose + Kalman Filter + DeepFlow 9.06 5.06 39.1

To further validate performance of the proposed method, we used annotated
videos from public pose tracking dataset called PoseTrack2018 [16]. This dataset
provides means to quantify performance of algorithms in two different tasks
- multi-person pose estimation task, through mean Average Precision metrics
(mAP), and multiple object tracking task, through Multiple Object Tracker
Accuracy metrics (MOTA). Effective multiple object tracking methods usually
rely on global trajectory analysis which is necessary to process videos with crowds
and large amount of occlusion. Since our method uses only local temporal data
and does not aim to improve results in these cases, we used mAP metrics only,
solving a multi-person multi-frame pose estimation (but not tracking) task. For
PCKh and mAP values calculation, we used code provided in the evaluation
repository referenced by PoseTrack official site.

The results for different algorithms are provided in the table 2.

Table 2. Results obtained on the PoseTrack dataset

Algorithm Precision Recall AP

No filtering 79.4% 57.7% 51.9%
Kalman Filter 70.4% 56.6% 50.8%
Kalman Filter + DeepFlow 79.5% 58.9% 52.7%
Kalman Filter + DIS 83.0% 58.0% 54.7%

The OpenPose network in our case was not trained on the PoseTrack dataset,
so the results should not be compared to its public leaderboard. In addition, the
dataset used a different pose model with 18 keypoints per pose, which could have
had a negative impact to metrics value. Also, the mAP metrics itself is not very
good for estimating filtration quality since it classifies each predicted keypoint in
a binary way - checking if it is closer to ground truth than some threshold or not.
Nonetheless there is an improvement in experiments that used Optical Flow as an
additional Kalman input. The performance degradation of filter without velocity
measurements may be attributed to a lag due to trajectory smoothing, which
was partially compensated by optical flow. Also, it was observed that errors in
tracking cause notable disruptions in filtered trajectories absent in unfiltered
case, which is an another source of errors.
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6 Discussion and Conclusions

In our paper, we presented a method allowing to refine output of an arbitrary
single-frame multi-person pose detection algorithm, by combining its output
with an optical flow-based velocity estimator. We showed with openly available
implementations that it is possible to improve pose estimation quality through
Kalman filtration, both with annotated and unannotated data. However, the
improvement achieved is relatively minor. We speculate that it may be developed
further, taking the following points into account.

The used camera-space constant-velocity 2D Kalman model is actually one
of the simplest models possible. Some of its limitations were shown in the results
section - for example, it produces bad results in moments where limb acceleration
is higher than usual - feet while stepping on the ground, ball strike, etc. It also
does not take into account various kinematic restrictions pertaining to humans,
such as limb length and angle restrictions. By replacing it with a more precise
human body model, it may be possible to improve Kalman filter performance
and overall result.

There is a vast amount of modern optical flow algorithms, including recent
ones based on trainable convolutional networks, which were not tested. Also,
their parameters may be fine-tuned, to better grasp individual limb movements.
The used optical flow algorithms were observed to predict human movement as
a whole object in some cases, depending on parameters, environment and image
quality.

The filter performance in our experiments greatly depends on the object
tracker, since Kalman filtration of wrong tracks tend to magnify errors even
more. While missing limb detections for several frames can be handled by the
Kalman filter well, detection and tracking artifacts that affect the whole pose
(e.g. track swap happening during occlusion, merging of several poses to one)
usually disturb output trajectory to a significant degree. For this reason, method
can be futher improved by using Kalman predictions eariler at the pose genera-
tion step. (e.g. when building pose from heatmaps and PAFs in case of OpenPose
detector).

In the future, we plan to validate the algorithm performance more using
available open source pose tracking datasets and compare different optical flow
algorithms. Also, it is our intention to validate performance of more complex
Kalman models.
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